Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death.

نویسندگان

  • H Friberg
  • M Ferrand-Drake
  • F Bengtsson
  • A P Halestrap
  • T Wieloch
چکیده

Induction of the mitochondrial permeability transition (MPT) has been implicated in cellular apoptosis and in ischemia-reperfusion injury. During MPT, a channel in the inner mitochondrial membrane, the mitochondrial megachannel, opens and causes isolated mitochondria to swell. MPT and mitochondrial swelling is inhibited by cyclosporin A (CsA), which may also inhibit apoptosis in some cells. Treatment with CsA (50 mg/kg, i.v.) showed a robust reduction of brain damage when administered 30 min before insulin-induced hypoglycemic isoelectricity of 30 min duration. Ultrastructural examination of the dentate gyrus revealed a marked swelling of dendrites and mitochondria during the hypoglycemic insult. In CsA-treated animals, mitochondria resumed a normal and contracted appearance during and after the hypoglycemic insult. Treatment with FK 506 (2 mg/kg, i.v.), a compound with immunosuppressive action similar to that of CsA, was not protective. Studies on the swelling kinetics of isolated mitochondria from the hippocampus showed that CsA, but not FK 506, inhibits calcium ion-induced MPT. We conclude that CsA treatment during hypoglycemic coma inhibits the MPT and reduces damage and that mitochondria and the MPT are likely to be involved in the development of hypoglycemic brain damage in the rat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons

Blockade of mitochondrial permeability transition protects against hypoglycemic brain damage. To study the mechanisms downstream from mitochondria that may cause neuronal death, we investigated the effects of cyclosporin A on subcellular localization of apoptosis-inducing factor and cytochrome c, activation of the cysteine proteases calpain and caspase-3, as well as its effect on brain extracel...

متن کامل

Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia.

Blockade of mitochondrial permeability transition protects against hypoglycemic brain damage. To study the mechanisms downstream from mitochondria that may cause neuronal death, we investigated the effects of cyclosporin A on subcellular localization of apoptosis-inducing factor and cytochrome c, activation of the cysteine proteases calpain and caspase-3, as well as its effect on brain extracel...

متن کامل

High susceptibility of activated lymphocytes to oxidative stress-induced cell death.

The present study provides evidence that activated spleen lymphocytes from Walker 256 tumor bearing rats are more susceptible than controls to tert-butyl hydroperoxide (t-BOOH)-induced necrotic cell death in vitro. The iron chelator and antioxidant deferoxamine, the intracellular Ca2+ chelator BAPTA, the L-type Ca2+ channel antagonist nifedipine or the mitochondrial permeability transition inhi...

متن کامل

Calcineurin and mitochondrial function in glutamate-induced neuronal cell death.

We have previously reported that glutamate can trigger a succession of necrosis and apoptosis in cerebellar granule cells (CGC). Since specific blockers of the N-methyl-D-aspartate (NMDA) receptor channel prevented both types of cell death, the role of Ca2+-dependent processes in the initiation of glutamate toxicity was further investigated. We examined the possible involvement of mitochondria ...

متن کامل

Calcineurin-independent inhibition of mitochondrial Ca2+ uptake by cyclosporin A.

1. Cyclosporin A (CsA) is a widely used compound because of its potent immunosupressive properties, derived mainly from the inhibition of calcineurin, and also because of its ability to block the mitochondrial permeability transition pore (PTP). This second effect has been involved in the protection against apoptosis mediated by release of mitochondrial factors. We show here that CsA (1-10 micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 14  شماره 

صفحات  -

تاریخ انتشار 1998